120 research outputs found

    475°C Embrittlement and Room Temperature Fatigue of Duplex Stainless Steel

    Get PDF
    Duplex stainless steels (DSSs) are two-phase materials consisting of both the ferritic and the austenitic phase. The alloys are prone to embrittlement particularly in the temperature range between 280°C and 512°C. This so-called 475°C embrittlement is caused by a decomposition of the ferritic phase into a chromium-rich α' and an iron-rich α phase. The objective of this study is to develop a better understanding of the embrittling process of DSS of type SAF 2205. Embrittled and non-embrittled DSS was fatigue tested in stress-controlled tests at 475°C and in strain-controlled tests at room temperature. The high temperature fatigue tests were stopped at different cycle numbers in order to characterize the changing material conditions by means of room-temperature tensile tests and scanning electron microscopy pictures of the fracture surfaces

    475oC Embrittlement and Room Temperature Fatigue of Duplex Stainless Steel

    Get PDF
    Duplex stainless steels (DSSs) are two-phase materials consisting of both the ferritic and the austenitic phase. The alloys are prone to embrittlement particularly in the temperature range between 280°C and 512°C. This so-called 475°C embrittlement is caused by a decomposition of the ferritic phase into a chromium-rich α' and an iron-rich α phase. The objective of this study is to develop a better understanding of the embrittling process of DSS of type SAF 2205. Embrittled and non-embrittled DSS was fatigue tested in stress-controlled tests at 475°C and in strain-controlled tests at room temperature. The high temperature fatigue tests were stopped at different cycle numbers in order to characterize the changing material conditions by means of room-temperature tensile tests and scanning electron microscopy pictures of the fracture surfaces

    Abnormal activity in the precuneus during time perception in Parkinson’s disease: An fMRI study

    Get PDF
    Background Parkinson's disease (PD) patients are deficient in time estimation. This deficit improves after dopamine (DA) treatment and it has been associated with decreased internal timekeeper speed, disruption of executive function and memory retrieval dysfunction. Methodology/Findings The aim of the present study was to explore the neurophysiologic correlates of this deficit. We performed functional magnetic resonance imaging on twelve PD patients while they were performing a time reproduction task (TRT). The TRT consisted of an encoding phase (during which visual stimuli of durations from 5s to 16.6s, varied at 8 levels were presented) and a reproduction phase (during which interval durations were reproduced by a button pressing). Patients were scanned twice, once while on their DA medication (ON condition) and once after medication withdrawal (OFF condition). Differences in Blood-Oxygenation-Level-Dependent (BOLD) signal in ON and OFF conditions were evaluated. The time course of activation in the brain areas with different BOLD signal was plotted. There were no significant differences in the behavioral results, but a trend toward overestimation of intervals ≀11.9s and underestimation of intervals ≄14.1s in the OFF condition (p<0.088). During the reproduction phase, higher activation in the precuneus was found in the ON condition (p<0.05 corrected). Time course was plotted separately for long (≄14.1s) and short (≀11.9s) intervals. Results showed that there was a significant difference only in long intervals, when activity gradually decreased in the OFF, but remained stable in the ON condition. This difference in precuneus activation was not found during random button presses in a control task. Conclusions/Significance Our results show that differences in precuneus activation during retrieval of a remembered duration may underlie some aspects of time perception deficit in PD patients. We suggest that DA medication may allow compensatory activation in the precuneus, which results in a more accurate retrieval of remembered interval duration

    Mental states as macrostates emerging from brain electrical dynamics

    Get PDF
    Psychophysiological correlations form the basis for different medical and scientific disciplines, but the nature of this relation has not yet been fully understood. One conceptual option is to understand the mental as “emerging” from neural processes in the specific sense that psychology and physiology provide two different descriptions of the same system. Stating these descriptions in terms of coarser- and finer-grained system states (macro- and microstates), the two descriptions may be equally adequate if the coarse-graining preserves the possibility to obtain a dynamical rule for the system. To test the empirical viability of our approach, we describe an algorithm to obtain a specific form of such a coarse-graining from data, and illustrate its operation using a simulated dynamical system. We then apply the method to an electroencephalographic recording, where we are able to identify macrostates from the physiological data that correspond to mental states of the subject

    Can we use verbal estimation to dissect the internal clock? Differentiating the effects of pacemaker rate, switch latencies, and judgment processes

    Get PDF
    Behavioural timing is frequently assumed to be based on the accumulation of pulses from a pacemaker. In humans, verbal estimation is often used to determine whether the effect of factors which influence subjective time become more pronounced at longer durations - that is, if they affect the slope of the judgment function, consistent with a change in the rate of the pacemaker. Here, participants judged blank intervals marked by two squares which either did or did not differ in size. In Experiment 1, a small change in marker size produced shorter temporal judgments than a large change. This effect was independent of objective duration and indicates that the slope changes seen in previous work are not an inevitable artefact of the verbal estimation procedure. However, Experiments 2 and 3 included conditions where the markers did not change size and established (a) that the effect of marker size depends on the other stimuli presented during the experiment, and (b) that slope effects occur even when they cannot possibly be due to a change in the rate of the pacemaker. Taken together, these results urge some caution in the use of verbal estimation as a methodology for deconstructing the putative internal clock

    Genetic Determinants of Time Perception Mediated by the Serotonergic System

    Get PDF
    Background: The present study investigates neurobiological underpinnings of individual differences in time perception. Methodology: Forty-four right-handed Russian Caucasian males (18–35 years old) participated in the experiment. The polymorphism of the genes related to the activity of serotonin (5-HT) and dopamine (DA)-systems (such as 5-HTT, 5HT2a, MAOA, DAT, DRD2, COMT) was determined upon the basis of DNA analysis according to a standard procedure. Time perception in the supra-second range (mean duration 4.8 s) was studied, using the duration discrimination task and parametric fitting of psychometric functions, resulting in individual determination of the point of subjective equality (PSE). Assuming the ‘dual klepsydra model ’ of internal duration representation, the PSE values were transformed into equivalent values of the parameter k (kappa), which is a measure of the ‘loss rate ’ of the duration representation. An association between time representation parameters (PSE and k, respectively) and 5-HT-related genes was found, but not with DArelated genes. Higher ‘loss rate ’ (k) of the cumulative duration representation were found for the carriers of genotypes characterized by higher 5-HT transmission, i.e., 1) lower 5-HT reuptake, known for the 5-HTTLPR SS polymorphism compared with LL, 2) lower 5-HT degradation, described for the ‘low expression ’ variant of MAOA VNTR gene compared with ‘high expression ’ variant, and 3) higher 5-HT2a receptor density, proposed for the TT polymorphism of 5-HT2a T102C gene compared with CC

    A hybrid feature selection approach for the early diagnosis of Alzheimer's disease

    Get PDF
    Objective. Recently, significant advances have been made in the early diagnosis of Alzheimer’s disease from EEG. However, choosing suitable measures is a challenging task. Among other measures, frequency Relative Power and loss of complexity have been used with promising results. In the present study we investigate the early diagnosis of AD using synchrony measures and frequency Relative Power on EEG signals, examining the changes found in different frequency ranges. Approach. We first explore the use of a single feature for computing the classification rate, looking for the best frequency range. Then, we present a multiple feature classification system that outperforms all previous results using a feature selection strategy. These two approaches are tested in two different databases, one containing MCI and healthy subjects (patients age: 71.9 ± 10.2, healthy subjects age: 71.7 ± 8.3), and the other containing Mild AD and healthy subjects (patients age: 77.6 ± 10.0; healthy subjects age: 69.4± 11.5). Main Results. Using a single feature to compute classification rates we achieve a performance of 78.33% for the MCI data set and of 97.56 % for Mild AD. Results are clearly improved using the multiple feature classification, where a classification rate of 95% is found for the MCI data set using 11 features, and 100% for the Mild AD data set using 4 features. Significance. The new features selection method described in this work may be a reliable tool that could help to design a realistic system that does not require prior knowledge of a patient's status. With that aim, we explore the standardization of features for MCI and Mild AD data sets with promising results
    • 

    corecore